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This paper concentrates on a theoretical examination of the influence of roughness on the
adhesive properties along metal-polymer interfaces. An algorithm has been designed to
generate a self-affine surface roughness. It has been used to examine influence of the Hurst
exponent on the interface strength during a pull-off test of metal-polymer laminates. The
generated surfaces are implemented in a cohesive zone model representing the interface
between a coated steel and polyethylene terephthalate (PET). From the model it can be
concluded that a small increase in surface area is linear with the interface strength. This
relation does not hold when the increase in surface area becomes larger than 150%. The
deviation from the linear relationship increases with smaller Young’s moduli. This is caused
by the reduced elastic energy storage in the polymer when local surface characteristics
become more important. C© 2005 Springer Science + Business Media, Inc.

1. Introduction
Metal-polymer laminates are used in daily products,
in particular in food industry such as in cans. For the
production of these laminates several methods exist to
adhere the polymer film to the metal. The strength of
the interface between the metal and the steel depends on
various aspects, one of which is the surface morphology
of the metal. Already in the early eighties of the last cen-
tury it was recognized that surfaces can be described by
self-affine fluctuations [1] and surfaces of rolled metal
appeared to be also self-affine rough. The effect of the
self-affine roughness on the interface strength is ad-
dressed in this paper from a numerical viewpoint. To
determine the influence of the surface roughness on the
interface strength a finite element model is presented
in which a cohesive zone defines the interface between
the polymer and the metal.

Surfaces for the cohesive zone model were created
with a modified version of the so-called Voss [2] algo-
rithm. The Voss algorithm is based on the assumption
that there is no preconditioned correlation length. In this
algorithm, points which are located a distinct distance
apart, are given randomly varying Gaussian amplitude
(w). The points that have been moved are connected
with straight lines. The rest of the points are placed
along these lines (Fig. 1). At each refinement step the
distance is divided by 2 and the amplitude of the normal
distributed Gaussian noise is reduced according to the
following equation:

wi = winitialλ
2αi with i = 1, 2, . . . ,2 log(N − 1) (1)

∗Author to whom all correspondence should be addressed.

In Equation 1 i is the refinement step number, α the
Hurst exponent, λ the lacunarity (normally 0.5), winitial
the initial roughness amplitude and N is the total num-
ber of points of the final surface. This algorithm is also
tractable in more dimensions, but for the sake of sim-
plicity in the rest of the paper 1D has been assumed.

Unfortunately the Voss algorithm as such is not able
to generate surfaces with specific topological proper-
ties. In fact we are interested in an algorithm, which is
able to generate surfaces as a function of the number
of surface points (N ), RMS roughness amplitude (w),
correlation length (ξ ) and Hurst exponent (α). In order
to generate these surfaces, we have chosen to adjust
the amplitude (wi ) of each refining step in such a way
that the generated random rough surface obeys prede-
fined parameters. An easy way to express these values
is using a height-height correlation:

H (r ) = 1

N − r

N−r∑

i=1

(h(r ) − h(r + i))2 (2)

while self-affine surfaces can be described as [3]:

H (ρ) = 2w2
(

1 − e−
(

ρ

ξ

)2α
)

with 0 < α < 1 (3)

In fact Equations 2 and 3 are equal to each other ex-
cept that Equation 3 describes a continuous (H (ρ))
and Equation 2 the discrete height-height correlation
(H (r )). Because the final surface height-height corre-
lation is known (Equation 3), it is important to know
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Figure 1 Refinement algorithm used by R.F. Voss (N = 9, winitial = 1,
r = 0.5, α = 0.5): .- first step; --second step; - final surface.

how each refinement step contributes to the final surface
(h(r )). It is straightforward to see that the addition of
two fully Gaussian random surfaces has a height-height
correlation that is equal to the addition of both height-
height correlations. If the number of surface points is
not infinite the total height-height correlation for all the
Voss additions becomes:

H (r ) =
2 log(N−1)∑

i=1

Hi (r ) (4)

In Fig. 2 the height-height correlation functions of
each refinement step is shown. In this figure only the
number of surface points and the refinement step deter-
mines the shape of the curves. For all these curves the
initial standard deviation (wi ) is set to equal to unity.
The summation of all these curves (Equation 4) will
produce a height-height correlation function that de-
pends on the amplitude of each curve. By exactly de-
scribing the height-height correlation function for each
step, the problem of generating self-affine surfaces be-
comes a problem of finding the right amplitude of each
refinement step. Nonetheless, for the description of the
height-height correlation function of a single refine-
ment step we need to describe all the properties of this
step and by combining these properties we should be
able to describe the whole curve.

Figure 2 Contribution of each Voss refinement step for a surface with
1025 points and initial rms roughness wi = 1 according to Equation 9.

The height-squared-difference of two neighboring
points is:

Hi (1) = 2w2
i

d2
i

= 22i+1w2
i

(N − 1)2 (5)

with the distance between two displaced points equal
to di = N−1

2i .
Because of extrapolation, the actual standard devi-

ation (σ i,actual) will be lower than the initial standard
deviation (Fig. 2) and this affects Equation 3. For a
fully Gaussian surface the Hurst exponent α equal is to
1 and the lateral correlation length becomes:

ξi = 1
√

− log

(
1 − w2

i

d2
i σ 2

i,actual

)

= 1
√

− log

(
1 − 4i w2

i

(N−1)2σ 2
i,actual

) (6)

The ratio between the initial standard deviation (wi ) and
the actual standard deviation (σi,actual) can be written as
a function of the refinement step (i) and the surface size
(N ):

σ 2
i,actual

w2
i

= 1

di

distancei∑

j=1

(
1 − j

di

)2

+
(

j

di

)2

= 1

3

(
2 + 4i

(N − 1)2

)
(7)

Taking Equations 3, 6 and 7 the height-height corre-
lation function of one added Voss surface can be de-
scribed by only three parameters: rms surface rough-
ness (wi ) surface size (N ) and refinement step (i) ac-
cording to:

Hi (r ) = 2σ 2
i,actual

(
1 − e−

(
r
ξi

)2)
= 2

3

(
2 + 4i

(N − 1)2

)

×
(

1 −
(

6(N − 1)2

4i + 2(N − 1)2
− 2

)r 2
)

w2
i (8)

By calculating the height-height correlation for several
distances (r ), it is possible to generate a set of linear
equations having the form:

2 · A · (w2) = H (r ) (9)

In Equation 9 the expected height-height correlation
(H (r )) is defined by Equation 3 and the square matrix
(A) is then defined by:

A(r, i) = 1

3

(
2 + 4i

(N − 1)2

)

×
(

1 −
(

6(N − 1)2

4i + 2(N − 1)2
− 2

)r 2
)

(10)
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Figure 3 Generated surface profiles (top) and height-height correlations
(bottom): .. requested height–height correlation; � samplepoint; • cal-
culated height–height correlation.

According to Equations 9 and 10 it is important to
choose the distances (r ) with care. The height-height
correlation function is an exponential function and the
distance between two points is also a power of the re-
finement step. Both arguments yield to the same choice
or the distances (r ):

rj = 2j − 1 with j = 1, 2, . . . ,2 log(N − 1) (11)

The refinement step (i) will cover the same values
as j . Combination of Equation 10 with Equation 11
generates the square matrix (A) for a given number of
surface points (N ). If the square matrix (A) is non-
singular, there is a unique solution of Equation 9. This
solution could contain negative values (w2

i < 0), which
will cause an imaginary surface. The only way to tackle
this problem is to find a solution that is very close to
Equation 9 with non-negative w2

i . For this problem sev-
eral solvers are available in literature [4–6]. Now, the
coefficients (wi ) for the Voss algorithm. Can be found
by solving Equation 9 for a given number of surface
points, correlation length, Hurst Exponent and RMS
roughness amplitude. Some examples of a generated
surface are shown in Fig. 3.

2. Results
The algorithm as described is used to generate a self-
affine rough interfaces. These interfaces are imple-
mented as a cohesive zone [7] in a finite element model
[8]. The cohesive zone model was chosen, because sub-
stantial changes in height will cause preferably shear
deformation and fracture instead of normal fracture.
The geometry of the model we used is axis-symmetric
(Fig. 4) with respect to the z-axis, which is also the
pulling direction. The thickness of the polymer layer is
40 µm. Two cylindrical metal plates with a thickness
of 20 µm and radius 2049 µm encloses the polymer.
Because of symmetry only half of this system is mod-
eled. The cohesive zone is laid in between the metal and
the polymer. The polymeric and metal descriptions are
based on quadrilaterals. In the model the size of these
cells is set to 1 × 1 µm.

Figure 4 Schematic picture of the model.

Figure 5 Calculated stress-strain response of PET (-) and the hypothet-
ical polymer (--).

As a material system a chromium-plated steel with a
polyethylene terephthalate (PET) coating was chosen.
The response stress-strain response of the model [8]
was fitted to the properties of PET [9] and the modeled
stress-strain behavior of the polymer is displayed in
Fig. 5. Further a hypothetical polymer is shown with
approximately the same properties except that it has
one half the Young’s modulus of PET.

For the determination of the shear and normal re-
sponse of the cohesive zone various peel-tests were per-
formed. For this test we used a tensile stage inside an
environmental scanning electron microscope (Philips-
XL30-FEG ESEM) to prevent charging of the deformed
polymer. From the scanning electron microscope obser-
vations, i.e. from both plane and cross-sectional view
(Fig. 6) we were able to estimate the angle between

Figure 6 Environmental scanning electron microscopy observations
during a zero degrees peel-test.
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Figure 7 Simulation of a 30 µm thick coating during a 0 degrees peel-test.

the applied displacement of 0 degrees and the approx-
imate 20 degrees at the crack-tip. The peel-tests were
performed under 0 degrees, i.e. fully under shear. Be-
cause of the necking of the polymer the crack-tip was
around 20 degrees instead of the global 0 degrees. In
addition pull-off tests were performed to measure the
maximum stress at normal opening for layer thickness
of approximate 50 µm between 2 rigid steel plates.
By performing several plane-strain simulations (Fig. 7)
with different shear to normal ratios we were able to
reach good agreement with the experiments. The cohe-
sive zone employed is shown in Fig. 8. The graph ex-
plains the relationship between the normal and the shear
traction. In the beginning of an experiment the cohesive
zone has a zero thickness. Due to loading the traction-
separation law will result in opening or shearing. When
large shear traction is applied, the maximum normal
traction is reduced and vice versa. It is important to
emphasize that normal and shear traction are coupled.

During an experimental pull-off test the loading
curve will increase until fracture occurs. At that point

Figure 8 Response of the cohesive zone: - normal traction; -- shear
traction; .- normal traction at maximum shear stress; .. shear traction at
maximum normal stress.

Figure 9 Stress displacement curve for w = 3; ξ = 29 and α = 0.6.
The square denotes at which stress the deformed mesh in the inset is
taken.

the loading curve drops asymptotically towards zero.
In the model description this instability also occurs.
In Fig. 9 a typical curve is shown together with the
deformed mesh at maximum stress. During the dis-
placement controlled test the cohesive zone elements
starts to fracture (the stress in the cohesive zone ele-
ment has passed the maximum value). Less cohesive
zone elements have to cope with the still increasing
global stress, which results in an increase in fractured
elements. This exponential behavior causes the finite
element model to fail. According to Fig. 8 cohesive
zone elements still function under compression or after
reaching a certain maximum stress level, making this
cohesive zone able to work without interference up to
the instability point. However, to avoid this instability
we will concentrate only on the maximum stress of the
force displacement curve.

We have calculated three different Hurst exponents
(0.3, 0.6 and 0.9) and rms roughness of 3 µm. A large
Hurst exponent means that the surface is locally flat.
Smaller values stand for large deviations from flatness
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Figure 10 Maximum stress as a function of the ratio w/ξ : � α = 0.3±
5%; � α = 0.6 ± 5%; � α = 0.9 ± 5%.

at shorter distances. For each Hurst exponent various
surfaces with different lateral correlation lengths are
calculated. These surfaces were used in the model cal-
culations of the maximum stress. Fig. 10 shows that
the lower Hurst exponents achieve a larger maximum
stress level before failure. Obviously this is caused by
the larger surface, which is inevitably with a jittery sur-
face. The increase in surface area involves a larger angle
between the normal and the shear stress at the interface
(Fig. 11). This angle was calculated by averaging the
angle of shear and normal stress over the whole surface
at the maximum global stress level. During a pull-off
test a large value of this angle already emerges at the
beginning of a test. This emphasizes the fact that for
large roughness a cohesive zone also needs to incorpo-
rate shear stresses.

The maximum stress level can also be presented as
a function of the relative area. As indicated in Fig. 12
an increase of the surface area causes an increase of
the maximum stress level. In the case of a small in-
crease of the surface area the maximum stress level is
linear with the increase in area. The relation holds up
to relatively larger areas but eventually deviation from
linearity occurs. In Fig. 12 also the results for a hypo-
thetical polymer is implemented which has one half the

Figure 11 Average angle between shear and normal stress: � α = 0.3±
5%; � α = 0.6 ± 5%; � α = 0.9 ± 5%.

Figure 12 Maximum stress as a function of the relative area for PET
(filled symbols) and the hypothetical polymer (open symbols): � α =
0.3 ± 5%; � α = 0.6 ± 5%; � α = 0.9 ± 5%.

Young’s modulus of polyethylene terephthalate (PET)
keeping the other properties constant. Because of the
smaller Young’s modulus the elastic energy storage is
reduced and a lower failure stress is found. For both
cases the response of the increase of the relative sur-
face area is similar. It is important to note the doubled
deviation effect for the hypothetical polymer.

3. Discussion and conclusions
A self-affine roughness model is designed which can
generate reproducible random rough surfaces. The
model can be easily extended to a 3D description. A
problem is that in some cases there is not a unique so-
lution of Equation 9. The positive point is that the set
of linear equations obtained is quite limited in size,
only depending on the number of points in one direc-
tion, and making the algorithm useful for solving a 3D
problem. The algorithm described can generate a set of
self-affine rough surface points. The number of points
is fixed after generating the surface. This is in contrast
with existing theoretical approaches [2].

Thin adhesive layers already proved to be stronger
than the material it is made of. This behavior is con-
firmed in the Figs 10 and 12. In the latter a large max-
imum stress distribution for rougher surfaces can be
seen. This broad distribution is the result of the limited
number of points used in the cohesive zone model. For
the hypothetical polymer with half the Young’s modu-
lus of PET this distribution is even larger. This is mainly
caused by the lower energy elastic storage that incor-
porates larger deformations. In that case local surface
characteristics start to play an important role by gen-
erating locally voids. These local effects influence the
maximum stress level to a large extent.

It is important to note that the surfaces used in the
model calculations are assumed to be fully covered with
the polymer. This is not always correct [10] and par-
tial wetting may lead to partial detachments. In prac-
tice wetting could give problems on these very rough
surfaces but it will strengthen the effects of roughness.
Another minor problem could be that loose cohesive
zone elements start to penetrate other cells. Within the
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numerical experiments presented here this event did not
occur.

The model described uses both normal and shear
components to prove that increase of surface area does
not linearly depend on the interface strength. For larger
Hurst exponents the surface area increase is small. In
that case the surface area and maximum stress have a
linear relationship. When the surface becomes rougher,
the mean angle between the tensile direction and the
surface becomes so high that shear starts to play a
role. As a consequence the linear relationship does
not hold for small Hurst exponents or very small lat-
eral correlation lengths. Local interface effects start to
play an important role. This is also the cause of the
larger deviations of the maximum stress. These local
effects increase for polymers with lower Young’s mod-
uli strengthened by the reduced elastic storage.
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